Algebraic Geometry Lecture 24 – Toric Varieties

Joe Grant¹

Last week we went

Toric variety \longrightarrow (Toric) fan.

This week we go the other way.

Let our lattice be $N \cong \mathbb{Z}^2$. Consider the two-dimensional cone σ generated by (0, 1) and (2, -1). Find the dual cone $\sigma^{\vee} \subset M = N^{\vee} = \text{Hom}(N, \mathbb{Z})$. *M* has a basis of functionals h_1, h_2 that we'll write as $h_1 = (1, 0)$ and $h_2 = (0, 1)$. The dual cone is

 $\{m \in M : m(s) \ge 0 \text{ for every } s \in \sigma\}.$

These are the "vectors in M at most orthogonal to everything in N". To see σ^{\vee} it helps to tensor with \mathbb{R} .

Over \mathbb{R} , $\sigma^{\vee} \otimes \mathbb{R}$ is generated by (1,2) and (1,0). But σ^{\vee} itself (which is really $M \cap$ "the dual of σ ") has three generators, (1,0), (1,2), and (1,1). This gives the semigroup associated to σ^{\vee} , called S_{σ} . (If it comes from a fan then it's finitely generated by Gordon's theorem.)

Write this group multiplicatively, so $(a, b) \cdot (c, d) = (a + c, b + d)$. Then we can form the semigroup algebra $\mathbb{C}S_{\sigma}$ whose elements are linear combinations of elements of S_{σ} with the induced multiplication.

 \ulcorner Recall group algebras: Let G be a finite group, then elements of $\mathbb{C}G$ look like $\lambda_1 g_1 + \ldots + \lambda_n g_n$, and we multiply them by, for example,

$$(5g_1 + 2g_2)(\sqrt{-3}g_3) = 5\sqrt{-3}g_1g_3 + 2\sqrt{-3}g_2g_3.$$

Semigroup algebras work the same way.

┛

If we write X = (1, 0), Y = (0, 1), we see S_{σ} has generators

u

$$X, XY, XY^2$$
.

So $\mathbb{C}S_{\sigma} = \mathbb{C}[X, XY, XY^2]$. We define a ring homomorphism

$$\mathbb{C}[u,v,w] \to \mathbb{C}S_{\sigma}$$

by

$$\mapsto X \quad v \mapsto XY \quad w \mapsto XY^2.$$

This is clearly surjective and has kernel $\langle uw - v^2 \rangle$, so by the first isomorphism theorem,

$$\mathbb{C}S_{\sigma} \cong \mathbb{C}[u, v, w]/(uw - v^2)$$

Finally to get our toric variety we let

 $U_{\sigma} = \operatorname{Spec} \mathbb{C}S_{\sigma},$

then we can see that $U_{\sigma} = \{(u, v, w) \in \mathbb{C}^3 : uw - v^2 = 0\}.$

¹Typed by Lee Butler