Algebraic Geometry Lecture 24 - Toric Varieties

Joe Grant ${ }^{1}$

Last week we went

$$
\text { Toric variety } \quad \longrightarrow \quad \text { (Toric) fan. }
$$

This week we go the other way.
Let our lattice be $N \cong \mathbb{Z}^{2}$. Consider the two-dimensional cone σ generated by $(0,1)$ and $(2,-1)$. Find the dual cone $\sigma^{\vee} \subset M=N^{\vee}=\operatorname{Hom}(N, \mathbb{Z})$. M has a basis of functionals h_{1}, h_{2} that we'll write as $h_{1}=(1,0)$ and $h_{2}=(0,1)$. The dual cone is

$$
\{m \in M: m(s) \geqslant 0 \text { for every } s \in \sigma\}
$$

These are the "vectors in M at most orthogonal to everything in N ". To see σ^{\vee} it helps to tensor with \mathbb{R}.

Over $\mathbb{R}, \sigma^{\vee} \otimes \mathbb{R}$ is generated by $(1,2)$ and $(1,0)$. But σ^{\vee} itself (which is really $M \cap$ "the dual of $\sigma ")$ has three generators, $(1,0),(1,2)$, and $(1,1)$. This gives the semigroup associated to σ^{\vee}, called S_{σ}. (If it comes from a fan then it's finitely generated by Gordon's theorem.)

Write this group multiplicatively, so $(a, b) \cdot(c, d)=(a+c, b+d)$. Then we can form the semigroup algebra $\mathbb{C} S_{\sigma}$ whose elements are linear combinations of elements of S_{σ} with the induced multiplication.
$\left\ulcorner\right.$ Recall group algebras: Let G be a finite group, then elements of $\mathbb{C} G$ look like $\lambda_{1} g_{1}+\ldots+\lambda_{n} g_{n}$, and we multiply them by, for example,

$$
\left(5 g_{1}+2 g_{2}\right)\left(\sqrt{-3} g_{3}\right)=5 \sqrt{-3} g_{1} g_{3}+2 \sqrt{-3} g_{2} g_{3}
$$

Semigroup algebras work the same way.

If we write $X=(1,0), Y=(0,1)$, we see S_{σ} has generators

$$
X, X Y, X Y^{2}
$$

So $\mathbb{C} S_{\sigma}=\mathbb{C}\left[X, X Y, X Y^{2}\right]$. We define a ring homomorphism

$$
\mathbb{C}[u, v, w] \rightarrow \mathbb{C} S_{\sigma}
$$

by

$$
u \mapsto X \quad v \mapsto X Y \quad w \mapsto X Y^{2}
$$

This is clearly surjective and has kernel $\left\langle u w-v^{2}\right\rangle$, so by the first isomorphism theorem,

$$
\mathbb{C} S_{\sigma} \cong \mathbb{C}[u, v, w] /\left(u w-v^{2}\right)
$$

Finally to get our toric variety we let

$$
U_{\sigma}=\operatorname{Spec} \mathbb{C} S_{\sigma}
$$

then we can see that $U_{\sigma}=\left\{(u, v, w) \in \mathbb{C}^{3}: u w-v^{2}=0\right\}$.

[^0]
[^0]: ${ }^{1}$ Typed by Lee Butler

